
event.cwi.nl/lsde/2016

Assignment 1: Querying a Social Graph

event.cwi.nl/lsde/2016

LDBC Data generator

• Synthetic dataset available in different

scale factors

– SF100  for quick testing

– SF3000  the real deal

• Very complex graph

– Power laws (e.g. degree)

– Huge Connected Component

– Small diameter

– Data correlations

Chinese have more Chinese names

– Structure correlations

Chinese have more Chinese friends

event.cwi.nl/lsde/2016

CSV file schema

• See: http://wikistats.ins.cwi.nl/lsde-data/practical_1

• Counts for sf3000 (total 37GB)

Person (9M)

PersonId PK

FirstName

LastName

Gender

Birthday

CreationDate

LocationIP

BrowserUsed

LocatedIn

Knows(1.3B)

PersonFrom

PersonTo

interests(.2B)

PersonID

tagID

Tags (16K)

TagID

Name

URL

Place(1.4K

PlaceID PK

URL

type

http://wikistats.ins.cwi.nl/lsde-data/practical_1

event.cwi.nl/lsde/2016

The Query

• The marketeers of a social network have been data mining the musical preferences of their users.

They have built statistical models which predict given an interest in say artists A2 and A3, that the

person would also like A1 (i.e. rules of the form: A2 and A3  A1). Now, they are commercially

exploiting this knowledge by selling targeted ads to the management of artists who, in turn, want to

sell concert tickets to the public but in the process also want to expand their artists' fanbase.

• The ad is a suggestion for people who already are interested in A1 to buy concert tickets of artist A1

(with a discount!) as a birthday present for a friend ("who we know will love it" - the social network

says) who lives in the same city, who is not yet interested in A1 yet, but is interested in other artists

A2, A3 and A4 that the data mining model predicts to be correlated with A1.

event.cwi.nl/lsde/2016

The Query

For all persons P :

• who have their birthday on or in between D1..D2

• who do not like A1 yet

we give a score of

– 1 for liking any of the artists A2, A3 and A4 and

– 0 if not

the final score, the sum, hence is a number between 0 and 3.

Further, we look for friends F:

– Where P and F who know each other mutually

– Where P and F live in the same city and

– Where F already likes A1

The answer of the query is a table (score, P, F) with only scores > 0

event.cwi.nl/lsde/2016

Binary files

• Created by “loader” program in example github repo

• Total size: 6GB

Person.bin

PersonId PK

Birthday

LocatedIn

Knows_first

Knows_n

Interests_first

Interests_n

Knows.bin

PersonPos

interests.bin

tagID

event.cwi.nl/lsde/2016

What it looks like

• Created by “loader” program in example github repo

• Total size: 6GB

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes

* 204M

48bytes

* 8.9M

4bytes

* 1.3B

event.cwi.nl/lsde/2016

The Naïve Implementation

The “cruncher” program

Go through the persons P sequentially

• counting how many of the artists A2,A3,A4 are liked as the score

for those with score>0:

– visit all persons F known to P.

For each F:

• checks on equal location

• check whether F already likes A1

• check whether F also knows P

if all this succeeds (score,P,F) is added to a result table.

event.cwi.nl/lsde/2016

Naïve Query Implementation

• “cruncher”

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes

* 204M

48bytes

* 8.9M

4bytes

* 1.3B

results

event.cwi.nl/lsde/2016

Sequential Query Implementation

• “cruncher”

– Pass 1: for each person calculate score

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes

* 204M

48bytes

* 8.9M

4bytes

* 1.3B

score

event.cwi.nl/lsde/2016

Sequential Query Implementation

• “cruncher”-2

– Pass 1: for each person calculate score

– Pass 2: for each friend, look for persons with score >1

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes

* 204M

48bytes

* 8.9M

4bytes

* 1.3B

score

results

event.cwi.nl/lsde/2016

Sequential Query Implementation

• “cruncher”-2

– Pass 1: for each person calculate score

– Pass 2: for each friend, look for persons with score >1

– Pass 3: filter results on mutual (P,F)

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes

* 204M

48bytes

* 8.9M

4bytes

* 1.3B

score

results

event.cwi.nl/lsde/2016

Improving Bad Access Patterns

• Minimize Random Memory Access

– Apply filters first. Less accesses is better.

• Denormalize the Schema

– Remove joins/lookups, add looked up stuff to the table (but.. makes it bigger)

• Trade Random Access For Sequential Access

– perform a 100K random key lookups in a large table

 put 100K keys in a hash table, then

scan table and lookup keys in hash table

• Try to make the randomly accessed region smaller

– Remove unused data from the structure

– Apply data compression

– Cluster or Partition the data (improve locality) …hard for social graphs

• If the random lookups often fail to find a result

– Use a Bloom Filter

